Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1842, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418456

RESUMEN

Human papillomavirus (HPV) is a significant contributor to the global cancer burden, and its carcinogenic activity is facilitated in part by the HPV early protein 6 (E6), which interacts with the E3-ligase E6AP, also known as UBE3A, to promote degradation of the tumor suppressor, p53. In this study, we present a single-particle cryoEM structure of the full-length E6AP protein in complex with HPV16 E6 (16E6) and p53, determined at a resolution of ~3.3 Å. Our structure reveals extensive protein-protein interactions between 16E6 and E6AP, explaining their picomolar binding affinity. These findings shed light on the molecular basis of the ternary complex, which has been pursued as a potential therapeutic target for HPV-driven cervical, anal, and oropharyngeal cancers over the last two decades. Understanding the structural and mechanistic underpinnings of this complex is crucial for developing effective therapies to combat HPV-induced cancers. Our findings may help to explain why previous attempts to disrupt this complex have failed to generate therapeutic modalities and suggest that current strategies should be reevaluated.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Papillomavirus Humano 16/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Oncogénicas Virales/genética , Genes Supresores de Tumor
2.
Chem Sci ; 14(44): 12484-12497, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020382

RESUMEN

Human papillomavirus (HPV) infections account for nearly all cervical cancer cases, which is the fourth most common cancer in women worldwide. High-risk variants, including HPV16, drive tumorigenesis in part by promoting the degradation of the tumor suppressor p53. This degradation is mediated by the HPV early protein 6 (E6), which recruits the E3 ubiquitin ligase E6AP and redirects its activity towards ubiquitinating p53. Targeting the protein interaction interface between HPV E6 and E6AP is a promising modality to mitigate HPV-mediated degradation of p53. In this study, we designed a covalent peptide inhibitor, termed reactide, that mimics the E6AP LXXLL binding motif by selectively targeting cysteine 58 in HPV16 E6 with quantitative conversion. This reactide provides a starting point in the development of covalent peptidomimetic inhibitors for intervention against HPV-driven cancers.

3.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35037045

RESUMEN

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/metabolismo , Genoma Viral/genética , Inestabilidad Genómica , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Exorribonucleasas/antagonistas & inhibidores , Genoma Viral/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Inhibidores de Integrasa VIH/farmacología , Isoindoles/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Compuestos de Organoselenio/farmacología , ARN Viral/biosíntesis , ARN Viral/genética , Raltegravir Potásico/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
4.
Nucleic Acids Res ; 49(16): 9294-9309, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34387694

RESUMEN

The SNM1 nucleases which help maintain genome integrity are members of the metallo-ß-lactamase (MBL) structural superfamily. Their conserved MBL-ß-CASP-fold SNM1 core provides a molecular scaffold forming an active site which coordinates the metal ions required for catalysis. The features that determine SNM1 endo- versus exonuclease activity, and which control substrate selectivity and binding are poorly understood. We describe a structure of SNM1B/Apollo with two nucleotides bound to its active site, resembling the product state of its exonuclease reaction. The structure enables definition of key SNM1B residues that form contacts with DNA and identifies a 5' phosphate binding pocket, which we demonstrate is important in catalysis and which has a key role in determining endo- versus exonucleolytic activity across the SNM1 family. We probed the capacity of SNM1B to digest past sites of common endogenous DNA lesions and find that base modifications planar to the nucleobase can be accommodated due to the open architecture of the active site, but lesions axial to the plane of the nucleobase are not well tolerated due to constriction around the altered base. We propose that SNM1B/Apollo might employ its activity to help remove common oxidative lesions from telomeres.


Asunto(s)
Endonucleasas/química , Exodesoxirribonucleasas/química , Exonucleasas/química , beta-Lactamasas/genética , Sitios de Unión/genética , Catálisis , Dominio Catalítico/genética , Proteínas de Unión al ADN , Endonucleasas/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/ultraestructura , Exonucleasas/genética , Humanos , Metales , Fosfatos/química , beta-Lactamasas/química
5.
Nucleic Acids Res ; 49(16): 9310-9326, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34387696

RESUMEN

Artemis (SNM1C/DCLRE1C) is an endonuclease that plays a key role in development of B- and T-lymphocytes and in dsDNA break repair by non-homologous end-joining (NHEJ). Artemis is phosphorylated by DNA-PKcs and acts to open DNA hairpin intermediates generated during V(D)J and class-switch recombination. Artemis deficiency leads to congenital radiosensitive severe acquired immune deficiency (RS-SCID). Artemis belongs to a superfamily of nucleases containing metallo-ß-lactamase (MBL) and ß-CASP (CPSF-Artemis-SNM1-Pso2) domains. We present crystal structures of the catalytic domain of wildtype and variant forms of Artemis, including one causing RS-SCID Omenn syndrome. The catalytic domain of the Artemis has similar endonuclease activity to the phosphorylated full-length protein. Our structures help explain the predominantly endonucleolytic activity of Artemis, which contrasts with the predominantly exonuclease activity of the closely related SNM1A and SNM1B MBL fold nucleases. The structures reveal a second metal binding site in its ß-CASP domain unique to Artemis, which is amenable to inhibition by compounds including ebselen. By combining our structural data with that from a recently reported Artemis structure, we were able model the interaction of Artemis with DNA substrates. The structures, including one of Artemis with the cephalosporin ceftriaxone, will help enable the rational development of selective SNM1 nuclease inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Endonucleasas/ultraestructura , Exodesoxirribonucleasas/ultraestructura , Inmunodeficiencia Combinada Grave/genética , Linfocitos B/enzimología , Dominio Catalítico/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Endonucleasas/antagonistas & inhibidores , Endonucleasas/química , Endonucleasas/genética , Inhibidores Enzimáticos/química , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Humanos , Fosforilación/genética , Pliegue de Proteína , Inmunodeficiencia Combinada Grave/enzimología , Inmunodeficiencia Combinada Grave/patología , Linfocitos T/enzimología
6.
DNA Repair (Amst) ; 95: 102941, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866775

RESUMEN

Unrepaired, or misrepaired, DNA damage can contribute to the pathogenesis of a number of conditions, or disease states; thus, DNA damage repair pathways, and the proteins within them, are required for the safeguarding of the genome. Human SNM1A is a 5'-to-3' exonuclease that plays a role in multiple DNA damage repair processes. To date, most data suggest a role of SNM1A in primarily ICL repair: SNM1A deficient cells exhibit hypersensitivity to ICL-inducing agents (e.g. mitomycin C and cisplatin); and both in vivo and in vitro experiments demonstrate SNM1A and XPF-ERCC1 can function together in the 'unhooking' step of ICL repair. SNM1A further interacts with a number of other proteins that contribute to genome integrity outside canonical ICL repair (e.g. PCNA and CSB), and these may play a role in regulating SNM1As function, subcellular localisation, and post-translational modification state. These data also provide further insight into other DNA repair pathways to which SNM1A may contribute. This review aims to discuss all aspects of the exonuclease, SNM1A, and its contribution to DNA damage tolerance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Animales , Proteínas de Ciclo Celular/química , ADN/efectos de los fármacos , ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/química , Humanos , Conformación Proteica
7.
Org Biomol Chem ; 17(35): 8094-8105, 2019 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-31380542

RESUMEN

Nine modified nucleosides, incorporating zinc-binding pharmacophores, have been synthesised and evaluated as inhibitors of the DNA repair nuclease SNM1A. The series included oxyamides, hydroxamic acids, hydroxamates, a hydrazide, a squarate ester and a squaramide. A hydroxamic acid-derived nucleoside inhibited the enzyme, offering a novel approach for potential therapeutic development through the use of rationally designed nucleoside derived inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Exodesoxirribonucleasas/antagonistas & inhibidores , Ácidos Hidroxámicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Exodesoxirribonucleasas/metabolismo , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Estructura Molecular , Relación Estructura-Actividad
8.
Nat Microbiol ; 4(2): 339-351, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510168

RESUMEN

Understanding the control of viral infections is of broad importance. Chronic hepatitis C virus (HCV) infection causes decreased expression of the iron hormone hepcidin, which is regulated by hepatic bone morphogenetic protein (BMP)/SMAD signalling. We found that HCV infection and the BMP/SMAD pathway are mutually antagonistic. HCV blunted induction of hepcidin expression by BMP6, probably via tumour necrosis factor (TNF)-mediated downregulation of the BMP co-receptor haemojuvelin. In HCV-infected patients, disruption of the BMP6/hepcidin axis and genetic variation associated with the BMP/SMAD pathway predicted the outcome of infection, suggesting that BMP/SMAD activity influences antiviral immunity. Correspondingly, BMP6 regulated a gene repertoire reminiscent of type I interferon (IFN) signalling, including upregulating interferon regulatory factors (IRFs) and downregulating an inhibitor of IFN signalling, USP18. Moreover, in BMP-stimulated cells, SMAD1 occupied loci across the genome, similar to those bound by IRF1 in IFN-stimulated cells. Functionally, BMP6 enhanced the transcriptional and antiviral response to IFN, but BMP6 and related activin proteins also potently blocked HCV replication independently of IFN. Furthermore, BMP6 and activin A suppressed growth of HBV in cell culture, and activin A inhibited Zika virus replication alone and in combination with IFN. The data establish an unappreciated important role for BMPs and activins in cellular antiviral immunity, which acts independently of, and modulates, IFN.


Asunto(s)
Activinas/farmacología , Antivirales/farmacología , Proteína Morfogenética Ósea 6/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antivirales/metabolismo , Células Cultivadas , Endopeptidasas/genética , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Hepatitis C/metabolismo , Hepcidinas/genética , Humanos , Factores Reguladores del Interferón/genética , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , ARN Viral/metabolismo , Transducción de Señal/genética , Proteína Smad1/genética , Ubiquitina Tiolesterasa , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos
9.
Nat Cell Biol ; 18(3): 271-280, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26807646

RESUMEN

Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is critical for survival and genome stability of individual cells and organisms, but also contributes to the genetic diversity of species. A vital step in HR is MRN-CtIP-dependent end resection, which generates the 3' single-stranded DNA overhangs required for the subsequent strand exchange reaction. Here, we identify EXD2 (also known as EXDL2) as an exonuclease essential for DSB resection and efficient HR. EXD2 is recruited to chromatin in a damage-dependent manner and confers resistance to DSB-inducing agents. EXD2 functionally interacts with the MRN complex to accelerate resection through its 3'-5' exonuclease activity, which efficiently processes double-stranded DNA substrates containing nicks. Finally, we establish that EXD2 stimulates both short- and long-range DSB resection, and thus, together with MRE11, is required for efficient HR. This establishes a key role for EXD2 in controlling the initial steps of chromosomal break repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN/metabolismo , Cromatina/metabolismo , Recombinación Homóloga/fisiología , Humanos , Proteínas Nucleares/metabolismo , Fase S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...